BEGIN:VCALENDAR PRODID:-//Microsoft Corporation//Outlook MIMEDIR//EN VERSION:1.0 BEGIN:VEVENT DTSTART:20121114T223000Z DTEND:20121115T000000Z LOCATION:155-F DESCRIPTION;ENCODING=QUOTED-PRINTABLE:ABSTRACT: Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale. SUMMARY:A Meshfree Particle Based Model for Microscale Shrinkage Mechanisms of Food Materials in Drying Conditions PRIORITY:3 END:VEVENT END:VCALENDAR