SC12 Home > SC12 Schedule > SC12 Presentation - Asynchronous Computing for Partial Differential Equations at Extreme Scales

SCHEDULE: NOV 10-16, 2012

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

Asynchronous Computing for Partial Differential Equations at Extreme Scales

SESSION: Research Poster Reception

EVENT TYPE: Posters and Electronic Posters

TIME: 5:15PM - 7:00PM

SESSION CHAIR: Torsten Hoefler

AUTHOR(S):Aditya Konduri, Diego A. Donzis

ROOM:East Entrance

ABSTRACT:
Advances in computing technology have made numerical simulations an indispensable research tool in the pursuit of understanding real life problems. Due to their complexity, these simulations demand massive computations with extreme levels of parallelism. At extreme scales, communication between processors could take up a substantial amount of time. This results in substantial waste in computing cycles, as processors remain idle for most of the time. We investigate a novel approach based on widely used finite-difference schemes in which computations are carried out in an asynchronous fashion---synchronization among cores is not enforced and computations proceed regardless of the status of messages. This drastically reduces idle times resulting in much larger computation rates and scalability. However, stability, consistency and accuracy have to be shown in order for these schemes to be viable. This is done through mathematical theory and numerical simulations. Results are used to design new numerical schemes robust to asynchronicity.

Chair/Author Details:

Torsten Hoefler (Chair) - ETH Zurich

Aditya Konduri - Texas A&M University

Diego A. Donzis - Texas A&M University

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar

Asynchronous Computing for Partial Differential Equations at Extreme Scales

SESSION: Research Poster Reception

EVENT TYPE:

TIME: 5:15PM - 7:00PM

SESSION CHAIR: Torsten Hoefler

AUTHOR(S):Aditya Konduri, Diego A. Donzis

ROOM:East Entrance

ABSTRACT:
Advances in computing technology have made numerical simulations an indispensable research tool in the pursuit of understanding real life problems. Due to their complexity, these simulations demand massive computations with extreme levels of parallelism. At extreme scales, communication between processors could take up a substantial amount of time. This results in substantial waste in computing cycles, as processors remain idle for most of the time. We investigate a novel approach based on widely used finite-difference schemes in which computations are carried out in an asynchronous fashion---synchronization among cores is not enforced and computations proceed regardless of the status of messages. This drastically reduces idle times resulting in much larger computation rates and scalability. However, stability, consistency and accuracy have to be shown in order for these schemes to be viable. This is done through mathematical theory and numerical simulations. Results are used to design new numerical schemes robust to asynchronicity.

Chair/Author Details:

Torsten Hoefler (Chair) - ETH Zurich

Aditya Konduri - Texas A&M University

Diego A. Donzis - Texas A&M University

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar