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1. Introduction and personal history 

2. Setting expectations from a 20 year career 
retrospective  

3. Key issues and opportunities in future 
programming models 

Three Goals for Talk 
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• B.A. Computer Science and Mathematical Sciences, Rice 
University, 1985 
– Planned to go on to business school to be an engineering manager 

• Ph.D. Computer Science, Rice University, 1991 
– Had planned to get a Masters degree 

• Research scientist positions at Rice, 1991-1992, and 
Stanford, 1992-1995 

• Visiting Professor, Caltech, 1995-1996 

• Research faculty (USC) and project leader (USC/ISI), 1996-
2008 

• Professor, University of Utah, since 2008 

• Personal: 
– Youngest of five, native Texan, mother taught math and 

computer literacy, father was a journalist 

– Married 25 years, two daughters 12 and 16 
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Personal History 



Research Timeline 

 4 

1986-2000: Interprocedural Optimization 

and Automatic Parallelization, Rice D 

System and Stanford SUIF Compiler 

1998-2005: DIVA Processing-in-

memory system architecture (HP 

Itanium-2 architecture)  

1998-2004: DEFACTO design 

environment for FPGAs (C to VHDL) 

2001-2006: Compilation for 

multimedia extensions (DIVA, 

AltiVec and SSE) 

2005-present: Auto-tuning compiler 

technology (memory hierarchy, 

multimedia extensions, multi-cores and 

GPUs) 

2007-present: Reports on compiler, 

exascale software and archiving 

research directions 



Compiler 

Introduction: What Drives the Research  

... while freeing 
programmers 
from managing 
low-level 
details 
(productivity). Technology 

Application 
Requirements 

Achieve high 
performance 
by exploiting 
architectural 
features ... 

Hardware Software 

Architecture 
Programming 

Model 

 5 



Compiler and Autotuning Technology 

• Increase compiler 
effectiveness through 
autotuning and 
specialization 

• Provide high-level 
interface to code 
generation (recipe) for 
library or application 
developer to suggest 
optimization 

• Bridge domain 
decomposition and 
single-socket locality 
and parallelism 
optimization  

• Autotuning for 
different optimization 
goals: performance, 
energy, reliability 

Library/Application Developer  Compiler Decision Algorithm  

Auto-tuning Framework  
* Select from optimized implementations 

CUDA-CHiLL 
and CHiLL 

… Optimized code variants 

Recipe describes how 

to optimize code for 

application context 

Source Code and 
Representative Input 



• X-TUNE from DOE X-Stack program 
– Design autotuning framework to produce high-performance, energy-efficient, reliable 

software for the exascale software stack of 2018 

– Utah leads in collaboration with Argonne and Berkeley National Laboratories and USC 

• Osprey from DARPA PERFECT program 
– Design an energy-efficient, high-performance embedded system targeting signal 

processing applications 

– Utah leads autotuning software system technology in collaboration with Nvidia (overall 
lead), Virginia Tech and others 

• SUPER, a DOE SciDAC Institute 
– Develop programming system technology for high-performance, energy-efficient, reliable 

scientific applications over the next 5 years 

– Utah leads performance optimization area, in collaboration with USC (overall lead), 
University of Maryland, University of North Carolina, University of Oregon, University of 
Tennessee, University of Texas-El Paso, Argonne, Berkeley, Livermore and Oak Ridge 
National Laboratories 

• NSF Projects 
– A Compiler-Based Autotuning Framework for Many-Core Code Generation 

– Hardware/Software Management of Large Multi-Core Memory Hierarchies  

– Correctness Verification Tools for Extreme Scale Hybrid Computing 

 

Current Projects 



1. Algorithms and abstractions in compilers are mathematically and 
logically elegant. 

2. The concrete realization of these algorithms and abstractions in 
working, faster code is tangible.  

3. Tracking current and future hardware is cool. 

4. Impacting science is rewarding. 

5. Working with scientists offers a human element.   

6. We work on problems critical to the nation’s and earth’s future. 

7. We get to work with the absolute best people across a bunch of 
fields. 

8. We get to use the absolute best hardware, including 
supercomputers.   

9. The area is sufficiently broad that all sorts of different skill sets 
and backgrounds are valuable. 

10. There are short-term and long-term benefits, so new students can 
impact practice while setting up for long-term research. 

Top 10 Reasons to Work in this Area 



• Before 2020, exascale systems will be able to 
compute a quintillion operations per second!   

• Scientific simulation will continue to  push on system 
requirements: 

– To increase the precision of the result 

– To get to an answer sooner (e.g., climate modeling, 
disaster modeling) 

• The U.S. will continue to acquire systems of 
increasing scale 

– For the above reasons 

– And to maintain competitiveness 

• A similar phenomenon in commodity machines 

– More, faster, cheaper 
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Getting to Exascale 



 
 

• Exascale architectures will be fundamentally different 
– Power management becomes fundamental 
– Reliability (h/w and s/w) increasingly a concern 
– Memory reduction to .01 bytes/flop  
– Hierarchical, heterogeneous 

• Basic rethinking of software 
– Express and manage locality and parallelism for ~billion 

threads 
– Create/support applications that are prepared for new 

hardware (underlying tools map to h/w details) 
– Manage power and resilience 

• Locality is a big part of power/energy 
• Resilience should leverage abstraction changes 

“Software Challenges in Extreme Scale Systems,” V. Sarkar, B. Harrod and A. Snavely, SciDAC 2009, June, 2009.  

Summary of results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009. 

Exascale Challenges Will Force Change in How 
We Write Software  
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Can programming language and compiler 
technology automatically solve the 

programming challenges? 
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• Old approaches to compilers mapping parallelism  
– Limited to loops and array computations 

– Difficult to find sufficient granularity (parallel work between 
synchronization) 

– Very restricted mapping strategy 

– Success but from fragile, complex software 
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8-processor Speedups--Digital AlphaServer 8400

Previous Work in Automatic Parallelization 

From Hall et al, “Maximizing 

Multiprocessor Performance with the SUIF 

Compiler”, IEEE Computer, Dec. 1996. 

 

50% higher Specfp95 ratio than 

previously reported 
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1990s View 

• Programmer writes 
code at high level 
– Much or all 

complexity managed 
by compiler  
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• But doing everything in the compiler is hard! 
• Expert programmers have knowledge that 

should be exploited. 

• Compiler development cycle is slow. 

• Application scientists will find expedient 
solutions. 



• What’s not working 
– Optimizations often applied in isolation, but 

significant interactions as architectures get more 
complex 

– Static compilers must anticipate all possible 
execution environments  

– Potential to slow code down 

– Users write low-level code to get around compiler 
which makes things even worse 

Historical Organization of Compilers,  
Users’ Perspective 
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 Bottom line: Known compiler techniques capable of 

much better performance than they are delivering, but 

solutions don’t generalize across applications and 

complexity of system is difficult to maintain. 
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• It seems clear that for the next decade 
architectures will continue to get more complex, and 
achieving high performance will get harder. 

• Most people in the research community agree that 
different kinds of parallel programmers will be 
important to the future of computing. 

• Programmers that understand how to write 
software, but are naïve about parallelization and 
mapping to architecture (Joe programmers) 

• Programmers that are knowledgeable about 
parallelization, and mapping to architecture, so can 
achieve high performance (Stephanie 
programmers) 

• Intel/Microsoft say there are three kinds (Mort, 
Elvis and Einstein) 

• Programming abstractions will get a whole lot better 
by supporting specific users. 

 

Future Parallel Programming 
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Thanks to exascale reports and workshops 

• Multiresolution programming systems for different users 
– Joe/Stephanie/Doug [Pingali, UT] 

– Elvis/Mort/Einstein [Intel] 

• Specialization simplifies and improves efficiency 
– Target specific user needs with domain-specific languages/libraries 

– Customize libraries for application needs and execution context 

• Interface to programmers and runtime/hardware 
– Seamless integration of compiler with programmer guidance and 

dynamic feedback from runtime 

• Toolkits rather than monolithic systems 
– Layers support different user capability 

– Collaborative ecosystem 

• Virtualization (over-decomposition) 
– Hierarchical, or flat but construct hierarchy when applicable? 
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A Broader View in 2012 



• Definition:  
– Automatically generate a “search space” of possible 

implementations of a computation 

• A code variant represents a unique implementation of a 
computation, among many  

• A parameter represents a discrete set of values that 
govern code generation or execution of a variant 

– Measure execution time and compare 

– Select the best-performing implementation (for exascale, 
tradeoff between performance/energy/reliability) 

• Key Issues: 
– Identifying the search space 

– Pruning the search space to manage costs 

– Off-line vs. on-line search 

What is Autotuning? 
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a. Autotuning libraries 
– Library that encapsulates knowledge of its performance 

under different execution environments 

– Dense linear algebra: ATLAS, PhiPAC 

– Sparse linear algebra: OSKI 

– Signal processing: SPIRAL, FFTW  

b. Application-specific autotuning 
– Active Harmony provides parallel rank order search for 

tunable parameters and variants 

– Sequoia and PetaBricks provide language mechanism for 
expressing tunable parameters and variants 

c. Compiler-based autotuning (this talk!) 
– Other examples: Saday et al., Swany et al., Eignenmann et al. 

– Related concepts: iterative compilation, continuous 
compilation, learning-based compilation  

Three Types of Autotuning Systems 
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{ 
Current/ 

Future  

Work 



Who/What Present Future 

Application 
programmer writes 

A single implementation of 
a computation, or perhaps 
a few guarded by run-time 
tests 

A compact search space 
of parameterized 
variants 

Library developer 
writes 

Numerous implementations 
of a computation, guarded 
by run-time tests 

A compact search space 
of parameterized 
variants 

Compiler generates A single implementation of 
a computation, or perhaps 
a few guarded by run-time 
tests 

A compact search space 
of parameterized 
variants 

System executes Compiled code as provided A synthesis of variants 
and their parameter 
values meeting 
optimization criteria 

Differences: Present and Future 
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• Foundational Concepts 

– Identify search space through a high-level description 
that captures a large space of possible implementations 

– Prune space through compiler domain knowledge and 
architecture features 

– Provide access to programmers with transformation 
recipes (controversial) 

– Uses source-to-source transformation for portability, 
and to leverage vendor code generation  

– Requires restructuring of the compiler 

• Impact 

– Developers write less and higher-level code, more 
automatically generated/managed 

– Systematic characterization and analysis 

 

 

Compiler-Based Autotuning: My Philosophy 
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a in shared memory, both a and b 

are read through texture memory 

Different computation 

decomposition leads to additional 

tile command 

Nvidia TC2050 Fermi 
implementation 
Mostly corresponds to CUBLAS 
3.2 and MAGMA  

Nvidia GTX-280 implementation 
Mostly corresponds to CUBLAS 
2.x and Volkov’s SC08 paper 

Transformation Recipes for Autotuning:  
Incorporate the Best Ideas from Manual Tuning 

21 



• Performance comparison with CUBLAS 3.2 

Compiler + Autotuning can yield comparable and even 
better performance than manually-tuned libraries 
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Matrix-Matrix Multiply (dgemm) 

Matrix-Vector Multiply (sgemv) 

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M. 

Khan, PhD Dissertation, University of Southern California, May 2012. 

 



Autotuning and Specialization for Nek5000 

• Applications: nuclear energy, astrophysics, ocean 
modeling, combustion, bio fluids, .... 

• Scales to P > 10,000 (Cray XT5, BG/P) 

• > 75% of time spent on manually optimized mxm 

– matrix multiply of very small, rectangular matrices 

– matrix sizes remain the same for different 
problem sizes 

Spectral element code: turbulence in wire-wrapped subassemblies 
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Library: 
2.2X speedup for 
specialized DGEMM  

nek5000: Automatically-Generated BLAS Code 
is Faster than Manually-Tuned Libraries 

Application:  
26% performance 
gain on Jaguar 
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“Autotuning and Specialization: Speeding up Nek5000 with Compiler Technology,” J. Shin, M. W. Hall, J. Chame, C. Chen, P. Fischer, 

P. D. Hovland, International Conference on Supercomputing, June, 2010. 



for si = 0 to NS-1 

  for k = 0 to NZ-1 

    for j = 0 to NY-1 

      for i = 0 to NX-1 

        r[i + j*JR + k*KR] -= 

              A[i + j*JA + k*KA + SA[si]] 

            * x[i + j*JX + k*KX + Sx[si]] 

2D 6-point Stencil 

• Semi-coarsening multigrid on structured grids 

– Residual computation contains sparse matrix-vector 
multiply bottleneck, expressed in 4-deep loop nest 

– Key computation identified by HPCToolkit 
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Application example from PERI:  
SMG2000 Optimization 



Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 

Performance gain on residual computation: 

2.37X  

Performance gain on full app:  

27.23% improvement 

Optimization search 

space has 581M points! 

 

Parallel search (Active 

Harmony) evaluates 

490 points, converges 

in 20 steps 

Parallel Heuristic-Based Search for 
SMG2000 Converges Rapidly 

Outlined Code (from ROSE outliner) 
for (si = 0; si < stencil_size; si++)  

    for (kk = 0; kk < hypre__mz; kk++)  

        for (jj = 0; jj < hypre__my; jj++)  

            for (ii = 0; ii < hypre__mx; ii++)  

                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=  

                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+ 

                     (((A->data_indices)[i])[si])])*  

                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));  

CHiLL Transformation Recipe  

permute([2,3,1,4]) 

tile(0,4,TI) 

tile(0,3,TJ) 

tile(0,3,TK)  

unroll(0,6,US)  

unroll(0,7,UI) 
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“Auto-tuning Full Applications: A Case Study", A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan, 

International Journal of High Performance Computing Applications, 25(3):286-294, Aug. 2011. 



A unified autotuning framework that seamlessly integrates 
programmer-directed and compiler-directed autotuning,  

•Expert programmer and compiler work collaboratively to 
tune a code. 

– Unlike previous systems that place the burden on either 
programmer or compiler. 

– Provides access to compiler optimizations, offering expert 
programmers the control over optimization they so often desire. 

•Design autotuning to be encapsulated in domain-specific 
tools  

– Enables less-sophisticated users of the software to reap the 
benefit of the expert programmers’ efforts. 

•Focus on Adaptive Mesh Refinement Multigrid (Combustion 
Co-Design Center,BoxLib,Chombo) and tensor contractions 
(TCE) 
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Future: X-TUNE (DOE X-Stack) 



• Conceptual: Rethink the development process as a way of 
expressing a search space rather than a fixed 
implementation 

– What are the right abstractions to expose to 
programmer 

– Integrate into multiresolution system 

• Navigating prohibitively large search space 

– Includes performance, power and reliability 

– Models and pruning are critical 

– Parallel search algorithms can be effective 

– Tuning multiple computations simultaneously still an 
open problem 

• Managing overhead (performance, storage and energy) 

Summary: Autotuning Challenges 
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