
Mary Hall

SC12

November 2012

Programming Exascale Supercomputers

* This work has been partially sponsored by DOE SciDAC, DOE Office of Science, the

National Science Foundation, DARPA and Intel Corporation.

 1

1. Introduction and personal history

2. Setting expectations from a 20 year career
retrospective

3. Key issues and opportunities in future
programming models

Three Goals for Talk

 2

• B.A. Computer Science and Mathematical Sciences, Rice
University, 1985
– Planned to go on to business school to be an engineering manager

• Ph.D. Computer Science, Rice University, 1991
– Had planned to get a Masters degree

• Research scientist positions at Rice, 1991-1992, and
Stanford, 1992-1995

• Visiting Professor, Caltech, 1995-1996

• Research faculty (USC) and project leader (USC/ISI), 1996-
2008

• Professor, University of Utah, since 2008

• Personal:
– Youngest of five, native Texan, mother taught math and

computer literacy, father was a journalist

– Married 25 years, two daughters 12 and 16
 3

Personal History

Research Timeline

 4

1986-2000: Interprocedural Optimization

and Automatic Parallelization, Rice D

System and Stanford SUIF Compiler

1998-2005: DIVA Processing-in-

memory system architecture (HP

Itanium-2 architecture)

1998-2004: DEFACTO design

environment for FPGAs (C to VHDL)

2001-2006: Compilation for

multimedia extensions (DIVA,

AltiVec and SSE)

2005-present: Auto-tuning compiler

technology (memory hierarchy,

multimedia extensions, multi-cores and

GPUs)

2007-present: Reports on compiler,

exascale software and archiving

research directions

Compiler

Introduction: What Drives the Research

... while freeing
programmers
from managing
low-level
details
(productivity). Technology

Application
Requirements

Achieve high
performance
by exploiting
architectural
features ...

Hardware Software

Architecture
Programming

Model

 5

Compiler and Autotuning Technology

• Increase compiler
effectiveness through
autotuning and
specialization

• Provide high-level
interface to code
generation (recipe) for
library or application
developer to suggest
optimization

• Bridge domain
decomposition and
single-socket locality
and parallelism
optimization

• Autotuning for
different optimization
goals: performance,
energy, reliability

Library/Application Developer Compiler Decision Algorithm

Auto-tuning Framework
* Select from optimized implementations

CUDA-CHiLL
and CHiLL

… Optimized code variants

Recipe describes how

to optimize code for

application context

Source Code and
Representative Input

• X-TUNE from DOE X-Stack program
– Design autotuning framework to produce high-performance, energy-efficient, reliable

software for the exascale software stack of 2018

– Utah leads in collaboration with Argonne and Berkeley National Laboratories and USC

• Osprey from DARPA PERFECT program
– Design an energy-efficient, high-performance embedded system targeting signal

processing applications

– Utah leads autotuning software system technology in collaboration with Nvidia (overall
lead), Virginia Tech and others

• SUPER, a DOE SciDAC Institute
– Develop programming system technology for high-performance, energy-efficient, reliable

scientific applications over the next 5 years

– Utah leads performance optimization area, in collaboration with USC (overall lead),
University of Maryland, University of North Carolina, University of Oregon, University of
Tennessee, University of Texas-El Paso, Argonne, Berkeley, Livermore and Oak Ridge
National Laboratories

• NSF Projects
– A Compiler-Based Autotuning Framework for Many-Core Code Generation

– Hardware/Software Management of Large Multi-Core Memory Hierarchies

– Correctness Verification Tools for Extreme Scale Hybrid Computing

Current Projects

1. Algorithms and abstractions in compilers are mathematically and
logically elegant.

2. The concrete realization of these algorithms and abstractions in
working, faster code is tangible.

3. Tracking current and future hardware is cool.

4. Impacting science is rewarding.

5. Working with scientists offers a human element.

6. We work on problems critical to the nation’s and earth’s future.

7. We get to work with the absolute best people across a bunch of
fields.

8. We get to use the absolute best hardware, including
supercomputers.

9. The area is sufficiently broad that all sorts of different skill sets
and backgrounds are valuable.

10. There are short-term and long-term benefits, so new students can
impact practice while setting up for long-term research.

Top 10 Reasons to Work in this Area

• Before 2020, exascale systems will be able to
compute a quintillion operations per second!

• Scientific simulation will continue to push on system
requirements:

– To increase the precision of the result

– To get to an answer sooner (e.g., climate modeling,
disaster modeling)

• The U.S. will continue to acquire systems of
increasing scale

– For the above reasons

– And to maintain competitiveness

• A similar phenomenon in commodity machines

– More, faster, cheaper

 9

Getting to Exascale

• Exascale architectures will be fundamentally different
– Power management becomes fundamental
– Reliability (h/w and s/w) increasingly a concern
– Memory reduction to .01 bytes/flop
– Hierarchical, heterogeneous

• Basic rethinking of software
– Express and manage locality and parallelism for ~billion

threads
– Create/support applications that are prepared for new

hardware (underlying tools map to h/w details)
– Manage power and resilience

• Locality is a big part of power/energy
• Resilience should leverage abstraction changes

“Software Challenges in Extreme Scale Systems,” V. Sarkar, B. Harrod and A. Snavely, SciDAC 2009, June, 2009.

Summary of results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009.

Exascale Challenges Will Force Change in How
We Write Software

 10

Can programming language and compiler
technology automatically solve the

programming challenges?

 11

• Old approaches to compilers mapping parallelism
– Limited to loops and array computations

– Difficult to find sufficient granularity (parallel work between
synchronization)

– Very restricted mapping strategy

– Success but from fragile, complex software

0

2

4

6

8

10

12

14

16
to

m
ca

tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

fp
pp

p

8-processor Speedups--Digital AlphaServer 8400

Previous Work in Automatic Parallelization

From Hall et al, “Maximizing

Multiprocessor Performance with the SUIF

Compiler”, IEEE Computer, Dec. 1996.

50% higher Specfp95 ratio than

previously reported

 12

1990s View

• Programmer writes
code at high level
– Much or all

complexity managed
by compiler

 13

• But doing everything in the compiler is hard!
• Expert programmers have knowledge that

should be exploited.

• Compiler development cycle is slow.

• Application scientists will find expedient
solutions.

• What’s not working
– Optimizations often applied in isolation, but

significant interactions as architectures get more
complex

– Static compilers must anticipate all possible
execution environments

– Potential to slow code down

– Users write low-level code to get around compiler
which makes things even worse

Historical Organization of Compilers,
Users’ Perspective

A
g
g

re
s
s
iv

e

O
p
ti
m

iz
a
ti
o
n

S
lo

w
d
o
w

n

R
is

k
 Bottom line: Known compiler techniques capable of

much better performance than they are delivering, but

solutions don’t generalize across applications and

complexity of system is difficult to maintain.

 14

• It seems clear that for the next decade
architectures will continue to get more complex, and
achieving high performance will get harder.

• Most people in the research community agree that
different kinds of parallel programmers will be
important to the future of computing.

• Programmers that understand how to write
software, but are naïve about parallelization and
mapping to architecture (Joe programmers)

• Programmers that are knowledgeable about
parallelization, and mapping to architecture, so can
achieve high performance (Stephanie
programmers)

• Intel/Microsoft say there are three kinds (Mort,
Elvis and Einstein)

• Programming abstractions will get a whole lot better
by supporting specific users.

Future Parallel Programming

 15

Thanks to exascale reports and workshops

• Multiresolution programming systems for different users
– Joe/Stephanie/Doug [Pingali, UT]

– Elvis/Mort/Einstein [Intel]

• Specialization simplifies and improves efficiency
– Target specific user needs with domain-specific languages/libraries

– Customize libraries for application needs and execution context

• Interface to programmers and runtime/hardware
– Seamless integration of compiler with programmer guidance and

dynamic feedback from runtime

• Toolkits rather than monolithic systems
– Layers support different user capability

– Collaborative ecosystem

• Virtualization (over-decomposition)
– Hierarchical, or flat but construct hierarchy when applicable?

 16

A Broader View in 2012

• Definition:
– Automatically generate a “search space” of possible

implementations of a computation

• A code variant represents a unique implementation of a
computation, among many

• A parameter represents a discrete set of values that
govern code generation or execution of a variant

– Measure execution time and compare

– Select the best-performing implementation (for exascale,
tradeoff between performance/energy/reliability)

• Key Issues:
– Identifying the search space

– Pruning the search space to manage costs

– Off-line vs. on-line search

What is Autotuning?

 17

a. Autotuning libraries
– Library that encapsulates knowledge of its performance

under different execution environments

– Dense linear algebra: ATLAS, PhiPAC

– Sparse linear algebra: OSKI

– Signal processing: SPIRAL, FFTW

b. Application-specific autotuning
– Active Harmony provides parallel rank order search for

tunable parameters and variants

– Sequoia and PetaBricks provide language mechanism for
expressing tunable parameters and variants

c. Compiler-based autotuning (this talk!)
– Other examples: Saday et al., Swany et al., Eignenmann et al.

– Related concepts: iterative compilation, continuous
compilation, learning-based compilation

Three Types of Autotuning Systems

 18

{
Current/

Future

Work

Who/What Present Future

Application
programmer writes

A single implementation of
a computation, or perhaps
a few guarded by run-time
tests

A compact search space
of parameterized
variants

Library developer
writes

Numerous implementations
of a computation, guarded
by run-time tests

A compact search space
of parameterized
variants

Compiler generates A single implementation of
a computation, or perhaps
a few guarded by run-time
tests

A compact search space
of parameterized
variants

System executes Compiled code as provided A synthesis of variants
and their parameter
values meeting
optimization criteria

Differences: Present and Future

 19

• Foundational Concepts

– Identify search space through a high-level description
that captures a large space of possible implementations

– Prune space through compiler domain knowledge and
architecture features

– Provide access to programmers with transformation
recipes (controversial)

– Uses source-to-source transformation for portability,
and to leverage vendor code generation

– Requires restructuring of the compiler

• Impact

– Developers write less and higher-level code, more
automatically generated/managed

– Systematic characterization and analysis

Compiler-Based Autotuning: My Philosophy

 20

a in shared memory, both a and b

are read through texture memory

Different computation

decomposition leads to additional

tile command

Nvidia TC2050 Fermi
implementation
Mostly corresponds to CUBLAS
3.2 and MAGMA

Nvidia GTX-280 implementation
Mostly corresponds to CUBLAS
2.x and Volkov’s SC08 paper

Transformation Recipes for Autotuning:
Incorporate the Best Ideas from Manual Tuning

21

• Performance comparison with CUBLAS 3.2

Compiler + Autotuning can yield comparable and even
better performance than manually-tuned libraries

 22

Matrix-Matrix Multiply (dgemm)

Matrix-Vector Multiply (sgemv)

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M.

Khan, PhD Dissertation, University of Southern California, May 2012.

Autotuning and Specialization for Nek5000

• Applications: nuclear energy, astrophysics, ocean
modeling, combustion, bio fluids,

• Scales to P > 10,000 (Cray XT5, BG/P)

• > 75% of time spent on manually optimized mxm

– matrix multiply of very small, rectangular matrices

– matrix sizes remain the same for different
problem sizes

Spectral element code: turbulence in wire-wrapped subassemblies

 23

Library:
2.2X speedup for
specialized DGEMM

nek5000: Automatically-Generated BLAS Code
is Faster than Manually-Tuned Libraries

Application:
26% performance
gain on Jaguar

 24

“Autotuning and Specialization: Speeding up Nek5000 with Compiler Technology,” J. Shin, M. W. Hall, J. Chame, C. Chen, P. Fischer,

P. D. Hovland, International Conference on Supercomputing, June, 2010.

for si = 0 to NS-1

 for k = 0 to NZ-1

 for j = 0 to NY-1

 for i = 0 to NX-1

 r[i + j*JR + k*KR] -=

 A[i + j*JA + k*KA + SA[si]]

 * x[i + j*JX + k*KX + Sx[si]]

2D 6-point Stencil

• Semi-coarsening multigrid on structured grids

– Residual computation contains sparse matrix-vector
multiply bottleneck, expressed in 4-deep loop nest

– Key computation identified by HPCToolkit

 25

Application example from PERI:
SMG2000 Optimization

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc

Performance gain on residual computation:

2.37X

Performance gain on full app:

27.23% improvement

Optimization search

space has 581M points!

Parallel search (Active

Harmony) evaluates

490 points, converges

in 20 steps

Parallel Heuristic-Based Search for
SMG2000 Converges Rapidly

Outlined Code (from ROSE outliner)
for (si = 0; si < stencil_size; si++)

 for (kk = 0; kk < hypre__mz; kk++)

 for (jj = 0; jj < hypre__my; jj++)

 for (ii = 0; ii < hypre__mx; ii++)

 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=

 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+

 (((A->data_indices)[i])[si])])*

 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe

permute([2,3,1,4])

tile(0,4,TI)

tile(0,3,TJ)

tile(0,3,TK)

unroll(0,6,US)

unroll(0,7,UI)

 26

“Auto-tuning Full Applications: A Case Study", A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan,

International Journal of High Performance Computing Applications, 25(3):286-294, Aug. 2011.

A unified autotuning framework that seamlessly integrates
programmer-directed and compiler-directed autotuning,

•Expert programmer and compiler work collaboratively to
tune a code.

– Unlike previous systems that place the burden on either
programmer or compiler.

– Provides access to compiler optimizations, offering expert
programmers the control over optimization they so often desire.

•Design autotuning to be encapsulated in domain-specific
tools

– Enables less-sophisticated users of the software to reap the
benefit of the expert programmers’ efforts.

•Focus on Adaptive Mesh Refinement Multigrid (Combustion
Co-Design Center,BoxLib,Chombo) and tensor contractions
(TCE)

 27

Future: X-TUNE (DOE X-Stack)

• Conceptual: Rethink the development process as a way of
expressing a search space rather than a fixed
implementation

– What are the right abstractions to expose to
programmer

– Integrate into multiresolution system

• Navigating prohibitively large search space

– Includes performance, power and reliability

– Models and pruning are critical

– Parallel search algorithms can be effective

– Tuning multiple computations simultaneously still an
open problem

• Managing overhead (performance, storage and energy)

Summary: Autotuning Challenges

 28

