An Effective Standard for Developing Performance
Portable Applications for Future Hybrid Systems

Supercomputing 2012
November 12, 2012

John Levesque
Director/CTO Office

12/3/2012 Supercomputing 2012 Nov 12, 2012 @

)) C=RANY”
First a confession '

| have never written an application from
scratch, everything | have done starts
with existing applications which |
restructure to run faster.

One might say that | am one of the
reasons some legacy applications are
still around.

PMME August 14, 2012 @

What Supercomputer Was this?

PMME August 14, 2012

What are these?

PMME August 14, 2012

Why was the Fortran line length 727? RS

¢i)is Y + U1 fﬁﬂiﬂﬁﬂ
= 11 B S G e e = = |

";::u?

T . |] FORTRAN STATEMENT hl‘rmmw
NowRin 8 s

.&0009’@00003.000.004JJU”S”C‘3‘.3';, 0600000008 4;.JL-u0 0000000000 00L3040|030|
l':)t)l’lvnu;:uu'.,1:\ INBZIXTAINRNIIN J ‘ : ARG RIHNGEORSTITN R)("‘S‘)i‘)tbl
l'llHHl.lll|11111x|x11|nn::rrzt:;'11;1'.:‘.1:"‘;;:.11“11111 LI I O lHlllliHl
|

|

QI222122202022 22222222222]

L

{
3:33333'333333333 33 3 3333'33.
|

t‘uuiuuuuqu-u: §4444484444348484444484284844444 :,-:i.':',-:;::444:5444-¢-3H4444H444

ﬂSSSiSFISISSSSSSSiISISS35??5'fJﬁ’Zif5fff?fifAZfi'f7:3535355555533555555555355555
SkSSSSwSSDSlab\I S 566565656665565666665666666 6666666666666

..............

o
o
o

o
o
o
o
o
oy
oy
o

—
o

=2
=2
o
o
<
=)

n7,rq1 BEREBERESERAEEEREENEEREESEEEEREREESEEEEEE S '.‘?:::7?77?7:7777?}7’7777727
I
' ' SN sl os838883288888888333888R8885a88888382388888888
|
|

o
o
oo
o
o>
o
==
(=)
o
oo
co
oo
o0
o«
o
oo
(=
oo
oo
oo

389898999953999989935939999559993 9995999999999393813f339509 |
- QO EEGS 12 SHN NN |

PMME August 14, 2012 @

Computational Steering in the 70s RSO

Set a sense switch, dump the velocity
Vector field to tape, take tape to Calcomp
Plotter.

PMME August 14, 2012 @

What Supercomputer is This? RSSO

@

Anyone know why
the door is open?

PMME August 14, 2012 @

Who Invented the Internet?

PMME August 14, 2012

CcCRANyY
1

° \
\

Another Seymour Masterpiece

PMME August 14, 2012

How much memory
did this system have?

What Supercomputer is this?

12/3/2012
LCI Conference - Pittsburgh 3/2010

®°
CRANY
2

My first laptop

Notur May 20, 2010

Door Prize for anyone guessing what this is.

PMME August 14, 2012

12/3/2012

LCI Conference - Pittsburgh 3/2010

What Supercomputer
IS this?

During this decade,

More money was spent on Disposal
Diapers than on Supercomputer

12/3/2012

LCI Conference - Pittsburgh 3/2010

What Supercomputer
IS this?

Famous Jurassic Park Prop

PMME August 14, 2012

The best Co-Array machine

s_______; =

L

Ji—

g

...........

—

PMME August 14, 2012

The System that shot down a satellite

PMME August 14, 2012

Our Current Challenge ='='T‘\".‘
NVIDIA Tesla GPU '
6GB GDDR5; with 665GF DPFP ~

138 GB/s

IA
nviD A

pCle Gen2

—{

RRRRRRRRR

ooooooooo m L — AMD Series
- 6200 CPU

1600 MHz DDR3;

Cray Gemini High
16, 32 or 64 GB

Speed Interconnect
Cray Inc. Titan Workshop Jan 23-27

- CRANY
O u t I I n e THE SUPERCOMPUTER COMPANY

= Future Architectural Directions
* Chips are not being designed for HPC
* Power consumption is a major concern
* \What is heterogeneous Computing?

= Programming implications
* All MPI is not an option
* OpenMP and OpenACC

12/3/2012 Supercomputing 2012 Nov 12, 2012 19

AN

THE SUPERCOMPUTER COMPANY

1.00E+13

1.00E+12

How Are We getting to a Exaflop

Vectors

More FLOPS/Watt

1.00E+11

w v O rr M

1.00E+10

1.00E+09

1.00E+08
2000 2001

Efficient Utilization of Chip Area

Power Hungary clock speed

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

M Clock M Cores m Vector [

oz Swercompu

uting 2012 Nov 12, 2012

e

m
;

Aem BB e ol oo A

. “‘ - h 2‘

THE SUPERCOMPUTER COMPANY

1.00E+13

I

1.00E+12

Programming Considerations

Vectorize Loops

1.00E+11
F
L
o)
P
S
1.00E+10
ALL MPI will not work
Must introduce Shared Memory Parallelism
1.00E+09
Don't Need to do Anything
1.00E+08
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
m Clock M Cores m Vector |

i A o a .

= .4

CRRANY"

THE SUPERCOMPUTER COMPANY

Potential System Architecture for Exaflop

System peak 2 Pflop/s 1 Eflop/s 0(1000)
Power 6 MW ~20 MW

System memory 0.3PB 32-64 PB [.03 Bytes/Flop] 0(100)
Node performance 125 GF 1,2 or 15TF 0(10) — O(100)
Node memory BW 25 GB/s 2 -4TB/s [.002 Bytes/Flop] 0(100)

[.20 Bytes/Flop]

Node concurrency 12 O(1k) or 10k 0(100) — O(1000)

Total Node Inte _3.5GB/s 200-400GB/s 100)
(1:4 or 1:8 from memory BW)

System size (nodes) 18,700 0(100,000) or O(1M) 0(10) - 0(100)

Total concurrency 225,000 O(billion) [0(10) to O(100) for 0(10,000)
latency hiding]

Storage 15 PB 500-1000 PB (>10x system 0(10) - 0(100)
memory is min)

10 0.2TB 60 TB/s (how long to drain the 0(100)

machine)
MTTI days O(1 day) - 0(10)

12/3/2012 Supercomputing 2012 Nov 12, 2012 22

Future Architectural Directions

= Nodes are becoming much more powerful
* More processors/node
* More threads/processor
* Vector lengths are getting longer
* Memory hierarchy is becoming more complex
* Scalar performance Is not increasing

Threading on the Node and Vectorization is
becoming more important

12/3/2012 Supercomputing 2012 Nov 12, 2012 23

CRRANY

THE SUPERCOMPUTER COMPANY

Today's Multi-Petascale Systems — Node Architecture

Cores on the | Total Vector Length | Programming
node threading Model
Blue Waters (16) 32 32 8 (4) OpenMP/MPI/
Vector
Blue Gene Q 16 32 8 OpenMP/MPI/
Vector
Magna-Cours | (12) 24 (12) 24 4 OpenMP/MPI/
Vector
Titan (ORNL) 16 (16) 16 (768%*) (8) (4) (32) Threads/Cuda
/Vector
Intel MIC >50 >200 16 OpenMP/MPI/
Vector
Power 7 (??) 16 32 8 OpenMP/MPI/
Vector

* Nvidia allows oversubscription to SIMT units
24

Vectorization is becomlng more important et —

= ALL accelerated nodes require vectorization at a
good size to achieve reasonable performance

* Nvidia Kepler 32 length
* Intel MIC >3
= All compilers other than Cray’'s CCE were

designed for marginal vector performance, they
do not understand current tradeoffs

* Be sure to get listing indicating if loop
vectorizes

= User refactoring of loop is paramount in gaining
good performance on future systems

12/3/2012 Supercomputing 2012 Nov 12, 2012 25

CRANY

THE SUPERCOMPUTER COMPANY

Memory Hierarchy is becoming more complex

= As processors get faster, memory bandwidth cannot keep
up
* More complex caches
* Non Uniform Memory Architecture (NUMA) for shared
memory on node
* Operand alignment is becoming more important
= Going forward this will become even more complex — two
memories within same address space
* Fast expensive memory
* Slow less expensive memory
* More about this later

12/3/2012 Supercomputing 2012 Nov 12, 2012 26

: . CRANY
Scalar performa nce IS not gettlng better THE SUPERCOMPUTER COMPANY

= Consider Intel’s chips

* Xeon line with more cores per node using
traditional X86 Instruction set

* MIC line with many more cores of slower
Processors

= Hosted system — Xeon with MIC

* Native mode — run complete app on the MIC

> Scalar performance will be an issue
» Non-vector code will be an issue

* Off Load mode — use Xeon as host, major

computation on MIC
» Memory transfer to and from Host will be an issue

12/3/2012 Supercomputing 2012 Nov 12, 2012 27

. . =AYy
Scalar Performance is not getting better

= Consider Nvidia approach

= | ooking at ARM chip as co-processor
* Once again scalar Is far below state of the art
Xeon
= So why not build an Exascale system out of
Xeons or Power 7
* TOO MUCH POWER

12/3/2012 Supercomputing 2012 Nov 12, 2012 28

CRANY
COde DESIgn Qu estlo n ? THE SUPERCOMPUTER COMPANY

= Should code designers be concerned with
memory management like that required to utilize
a hosted accelerator like XK7

YES

* This is not throw away work?

12/3/2012 Supercomputing 2012 Nov 12, 2012 29

CRANY
W H Y ? ? THE SUPERCOMPUTER COMPANY

= All systems will soon have a secondary memory
that is as large as we require; however, it will not
have high bandwidth to the principal compute
engine.

=" There will be a smaller faster memory that will
supply the principal compute engine.

= \While system software may manage the two
memories for the user, the user will have to
manage these desperate memories to achieve
maximum performance

12/3/2012 Supercomputing 2012 Nov 12, 2012 30

: _ CRANY
So What is Heterogeneous Computing

m | pbelieve it will have more to do with different
memories

* If doing scalar processing, application can

afford to access slower larger memory

» Scalar processing may be significantly slower than state-of-
the-art Xeon

* If doing high speed compute, application must
have major computational arrays in fast

memory

> Parallel vector processing need high memory bandwidth and
larger caches/registers

12/3/2012 Supercomputing 2012 Nov 12, 2012 31

So how should we program for these new CRANY
systems

What to avoid

Excessive memory movement

* Memory organization is the most important analysis for
moving an application to these systems

Avoid wide gaps between operands
* Indirect addressing is okay, if it is localized

Avoid scalar code
e Think about Cyber 205, Connection Machine

Supercomputing 2012 Nov 12, 2012 12/3/2012 32

So how should we program for these new CRANY
systems

What to do — Good Threading (OpenMP)
Must do high level threading

Thread must access close shared memory rather
than distant shared memory

Load Balancing

What to do — Good Vectorization

Vectorization advantage allows for introducing
overhead to vectorize
Vectorization of Ifs
Conditional vector merge (too many paths??)
Gather/scatter (Too much data motion??)
|dentification of strings

Supercomputing 2012 Nov 12, 2012 12/3/2012 33

Why OpenMP? b

Given the success of OpenMP extensions for
accelerators, OpenACC and Intel’s OffLoad Directives
OpenMP offers an approach to develop a
performance portable application that targets ALL
future architecture

Supercomputing 2012 Nov 12, 2012 12/3/2012 34

EEEEEEEEEEEEEEEEEEEEEEE

Programming for Future

Multi-Petaflop and Exaflop Computers

aka

Finding more parallelism in existing applications

Porting an existing application to new Systems SRS

° \
\

. Convertlng to Hybrid OpenMP/MPI
|dentifying high level OpenMP loops
Using the Cray Scoping tool
Using the program library (-hwp)
NUMA effects on the XK6 node
Comparing Hybrid OpenMP/MPI to all MP!
Using the progress engine for overlapping MPIl and computation

. Looklng at methods of acceleration
Using Cuda with OpenACC and Cuda Fortran, Visual profiler, command
line profiler, libsci being used with OpenACC
- A systematic gproach for converting a Hybrid OpenMP/MPI
appllcatlon to OpenACC
Using OpenACC
First, let the compiler do most of the work

Usin Cra;goat to identify the most time consuming portions of the
accelerated code

Optimizing the OpenACC code

- Most optimizations will improve OpenMP code

Employing Cuda and/or Cuda Fortran in an OpenACC application

12/3/2012 Supercomputing 2012 Nov 12, 2012

Back to the Futures — Combining different levels of L e
parallelism

e Fact e Fact
e For the next decade all e Current petascale
HPC system will basically applications are not
have the same structured to take
architecture advantage of these
e Message passing between nodes architectu res
e Multi-threading within the node — e Current — 80-90% of application

MPI will not do use a single level of parallelism,
e Vectorization at the lower level - message passing between the
cores of the MPP system

e Looking forward, application
developers are faced with a
significant task in preparing their
applications for the future

CRANY

THE SUPERCOMPUTER COMPANY

Hybridization™ of an All MPI
Application

* Creation of an application that exhibits three levels of
parallelism, MPIl between nodes, OpenMP** on the node and
vectorized looping structures

** Why OpenMP? To provide performance portability. OpenMP is
the only threading construct that a compiler can analyze
sufficiently to generate efficient threading on multi-core nodes
and to generate efficient code for companion accelerators.

CRANY

THE SUPERCOMPUTER COMPANY

CAUTION!!

e Do not read “Automatic” into this presentation, the
Hybridization of an application is difficult and efficient code
only comes with a thorough interaction with the cacciler to
generate the most efficient code and

e High level OpenMP structures
e Low level vectorization of major computational areas

e Performance is also dependent upon the location of the data.
Best case is that the major computational arrays reside on the

accelerator. Otherwise computational intensity of the
accelerated kernel must be significant

Cray’s Hybrid Programming Environment
supplies tools for addressing these issues

CRANY

THE SUPERCOMPUTER COMPANY

Three levels of Parallelism required

e Developers will continue to use MPI between nodes or sockets

e Developers must address using a shared memory
programming paradigm on the node

e Developers must vectorize low level looping structures

e While there is a potential acceptance of new languages for
addressing all levels directly. Most developers cannot afford
this approach until they are assured that the new language will
be accepted and the generated code is within a reasonable

performance range

Converting the MPI application to a Hybrid OpenMP/MPI CER AN
a p p I icatio n THE SUPERCOMPUTER COMPANY

Task 1 — Identification of potential accelerator kernels

e |dentify high level computational structures that account for a significant
amount of time (95-99%)
* To do this, one must obtain global runtime statistics of the application

e High level call tree with subroutines and DO loops showing inclusive/exclusive time, min, max,
average iteration counts.

e |dentify major computational arrays

e Tools that will be needed
e Advanced instrumentation to measure

e DO loop statistics, iteration counts, inclusive time
e Routine level sampling and profiling

Normal Profile — default Craypat report

Table 1:
Time$ | Time |
I |
I |
100.0% | 50.553984 |
| 52,13 [26338936%S
|
|| 16.9% | 8.540852
|| 8.0% | 4.034867
| 7 o L% 3.612980
I 3o 15N 1.859449
I .50 1.666590
|| 2.6% | 1.315145
|| 1.8% | 0.923711
|| 1.8% | 0.890751
|] 1.4% | 0.719636
|| 1.0% | 0.513454
| 1.0% | 0.5086906
|| 1.0% | 0.504152
I
| 37.9% | 19.149499
I
| 28.7% | 14.4875064
|| 8.7% | 4.391205
I
| 10.0% | 5.050780
I
|] 6.9% | 3.4832006
| 3.1% | 1.567285
I

Imb. |
Time |

.366647
.222303
.862830
.094075
.064095
.119832
.048359
.064695
.079651
.019075
.023855
.027139

0 DT213E
.885755

.813952
.606728

Imb. |

Time$% |

o o° o© o° o° o°

o° o©° o°

o°

O W O oy U1 60 W b W U b
R Ol oy ©O 00 O B J 00 WwN
o°

o°

6922023.0

Profile by Function Group and Function

Calls

6915004.0

2592000.
288000.
288000.
288000.
288000.
576000.
864000.
288000.
288000.
864000.

500.

3512.0

3000.
2 .

3502.0

| Group

Function
PE=HIDE

| Total

0
0

3000.0
501 @

| USER

|parabola
| remap

| riemann
| ppmlr
levolve

| paraset
| volume
| states
|flatten
| forces

| sweepz
| sweepy

| MPI

|lmpi alltoall
|mpi comm split

|MPI_SYNC

HiEEae L itoall (sync)
|mpi allreduce (sync)

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Normal Profile —Using “setenv PAT_RT _HWPC1”

Time$ 12.4%

Time 9.438486 secs

Imb. Time 0.851876 secs

Imb. Time$% 8.3%

Calls 0.265M/sec 2592000.0 calls

PAPI L1 DCM 42.908M/sec 419719824 misses

PAPI TLB DM 0.048M/sec 474094 misses

PAPI L1 DCA 1067.727M/sec 10444336795 refs

RN EE OPS 1808.848M/sec 17693862446 ops

Average Time per Call 0.000004 secs

CrayPat Overhead : Time 75.3%

User time (approx) 9.782 secs 21520125183 cycles 100.0% Time
HW FP Ops / User time 1808.848M/sec 17693862446 ops 10.3%peak (DP)
HW FP Ops / WCT 1808.848M/sec

Computational intensity 0.82 ops/cycle 1.69 ops/ref

MFLOPS (aggregate) 7409042.08M/sec

TLB utilization 22030.09 refs/miss 43.028 avg uses

D1 cache hit,miss ratios 96.0% hits 4.0% misses

D1 cache utilization (misses) 24.88 refs/miss 3.111 avg hits

)

Re-compiling with —hprofile_generate “pat_report—O callers’
100.0% | 117.646170 | 13549032.0 |Total

| 75.4% | 88.723495 | 13542013.0 |USER

R s =~ — - - - - ————————————

[l 10.7% | 12.589734 | 2592000.0 |parabola

e e — — — — ——— - ——————

31 T.1% | 8.360290 | 1728000.0 |remap .LOOPS

20 | | | remap_

S | | | ppmlr

L e e ettt el

ol |11l 3.2% | 3.708452 | 768000.0 |sweepx2 .LOOP.2.1i.35
7H0000 | | | sweepx2 .LOOP.1.1i.34
11111 | | | sweepx2 .LOOPS

SHE N | | | Sweepx2_

10| ||| | | | vhone

G I 3.1% | 3.663423 | 768000.0 |sweepxl .LOOP.2.1i.35
VARERE | | | sweepxl .LOOP.1.1i.34
11111 | | | sweepxl .LOOPS
CARNEE | | | sweepxl

100 |1 | I | vhone

BEEERES = ————=—=—===========—=—=—— === === ———============

3| 3.6% | 4.229443 | 864000.0 |ppmlr

B 00 T T T m e

af 1.6% | 1.880874 | 384000.0 |sweepx2 .LOOP.2.1i.35
511 | | | | sweepx2 .LOOP.1.1i.34
ol || | | | sweepx2 .LOOPS

710 | | | sweepx2

Salall | | | vhone

411] 1.6% | 1.852820 | 384000.0 |sweepxl .LOOP.2.1i.35
S| | | | sweepxl .LOOP.1.1i.34
61| | | | | LSHeeRSREREGOPS

el | | | sweepxl

8111 I | | vhone

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

Converting the MPI application to a Hybrid OpenMP/MPI application

Task 2 Parallel Analysis, Scoping and Vectorization

e |nvestigate parallelizability of high level looping structures

e Often times one level of loop is not enough, must have
several parallel loops

e User must understand what high level DO loops are in fact
independent.

e Without tools, variable scoping of high level loops is very
difficult

* Loops must be more than independent, their variable usage must adhere to
private data local to a thread or global shared across all the threads

e |Investigate vectorizability of lower level Do loops

e Cray compiler has been vectorizing complex codes for over
30 years

CRANY

Converting the MPI application to a Hybrid OpenMP/MPI application

Task 2 Parallel Analysis, Scoping and Vectorization (Cont)

e Current scoping tool, -homp_analyze, is meant to interface to
a code restructuring GUI called “reveal”. At this time, we need
to use cryptic output and massage it with editor/script.

e IdirS omp_analyze loop

e |n order to utilize scoping tool for loops that contain
procedures the program library need to be employed
e -hwp —hpl=vhone.aid

e This will do an initial pass of the code, checking for error and then at the
load it will build the program library and perform the analysis

e Compiler will be very conservative

» <object_message kind="warn">LastPrivate of array may be
very expensive.</object_message>

Main window of reveal

?Reveal 0.

Eile
v About Reveal () | ¥ vhone.aid €)
-I|FuIIList $|¢- =
[+ riemann.fa0 E]
[+ states.fI0
P sweeps].fa0
P sweeps2.fa0
[sweepy 90
= sweepz.f90
= SWEEPZ
Loop @22
Loop @23
Loop @24
Loop @26
Loop @55
Loop @62
Loop @63
lann T4 IEI
Info
vhone.aid loaded

t3

#endif

54 |doj=1. s

1
&7
1]
1]
&0
&1
62
63
B4
1]
(1
&7
[1:]
3]
70
b
72
73
74
75
76
77
78

ES doi=1. isz

radius = zxc liHmypez tisz)

theta = zycijHmypey ‘sl

stheta = sintheta)

radius = radius * stheta

I Put state variables into 10 arrays. padding with & ghost zones

do m =1, npez

dok =1, ks
n=k+ks*m-1) +6
rin} = recw3(1,jbk.i.m}
pind = recw3 2 jk.i.m)
uin) = recw3 G jh.im)
win) = recw3 @ jh.im)
win) = recw3id,jb.im)
fin) = recw3ib.j.h.i.m)
enddo

enddo

do k=1, kmax
n=k+&
¥a In) = zzalk)
dx in) = zdzik)
x@ling = zzaik)

CRANY

THE SUPERCOMPUTER COMPANY

Scoping window

: Type

Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar

Scalar

Scope
Unknown
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

Private

Search:

Dump Data

g:g LClose

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

At this point we should have some idea of the major arrays

Which arrays are use in the major computational routines?

N

Where else are these arrays used?

w

Are other arrays used with identified arrays
Gotol

I
' e e e

This is extremely difficult in Fortran and more so in C
and C++. We could really used a tool that identified
where in the code certain range of memory was used.

CRANY

THE SUPERCOMPUTER COMPANY

What we end up finding out

Private Variables in module, need to use Threadprivate

!Somp threadprivate (r, p, e, 9, u, v, w,xa, xal, dx, dx0, dvol,f, flat,para,radius, theta,
stheta)

real, dimension (maxsweep) :: r, p, €, 4, U, v, W fluid variables

(!
real, dimension (maxsweep) :: xa, xa0, dx, dx0, dvol ! coordinate values
real, dimension (maxsweep) :: f, flat ! flattening parameter
real, dimension (maxsweep,5) :: para ! parabolic interpolation
coefficients
real :: radius, theta, stheta

Reduction variable down callchain, need to use
1SOMP CRITICAL;'!'SOMP END CRITICAL

hdt = [0 Skiehd
do n = nmin-4, nmax+4
Cdtdx (n) = sqgrt(gam*p(n)/r(n))/(dx(n)*radius)
enddo
!Somp critical
do n = nmin-4, nmax-+4
svel = max (svel,Cdtdx (n))
enddo

!Somp end critical
do n = nmin-4, nmax+4

Cdtdx (n) = Cdtdx (n)*hdt

fCdtdx (n) 1. - fourthd*Cdtdx (n)
enddo

CRANY

THE SUPERCOMPUTER COMPANY

Task 3 Moving from OpenMP to OpenACC

Things that are different between OpenMP and OpenACC
Cannot have CRITICAL REGION down callchain
Cannot have THREADPRIVATE
Vectorization is much more important

Cache/Memory Optimization much more important
No EQUIVALENCE

Currently both OpenMP and OpenACC must be included in the source

#ifdef GPU

I$acc parallel loop private(k,j,i,n,r, p, €, 4, u, v, w, svel0,&

I$acc& xa, xa0, dx, dx0, dval, f, flat, para,radius, theta, stheta)&
I$acc& reduction(max:svel)

#else

ISomp parallel do private(k,j,i,n,r, p, €, g, u, v, w, svel0,&

ISomp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
ISomp& reduction(max:svel)

#endif

Resultant Hybrid S3D Performance

rno—n——ﬂli

m 3 - o

(v 25 0nnwn)

900

800

700

600

500

400

300

200

100

Weak Scaling, Lower is Better

-

10000

20000 30000 40000 50000 60000 70000

Number of cores { 12 cores/node)

Supercomputing 2012 Nov 12, 2012

80000

12/3/2012

90000

100000

—— Hybrid S3D
=l All MPI S3D

NVIDIA, Cray, PGI, CAPS Unveil
‘OpenACC’ Programming
Standard for Parallel Computing

Directives-based Programming Makes
Accelerating Applications Using
CPUs and GPUs Dramatically Easier

b

c=Ray PGl cares

Supercomputing 2012 Nov 12, 2012 12/3/2012 53

NVIDIA.

OpenACC.

DIRECTIVES FOR ACCELERATORS

CRANY

THE SUPERCOMPUTER COMPANY

e A common directive programming model for today’s GPUs
* Announced at SC11 conference

. : The
o Offers portability between compilers OUchg’E’FE',:ACC’”API
e Drawn up by: NVIDIA, Cray, PGI, CAPS ailiﬁ;]j;g%om iy

e Multiple compilers offer portability, debugging, permanen CCJ o g
e Works for Fortran, C, C++ .

e Standard available at www.OpenACC-standard.org
e I|nitially implementations targeted at NVIDIA GPUs

e Current version: 1.0 (November 2011)

e Compiler support:

* Cray CCE: partial now, complete in 2012
* PGl Accelerator: released product in 2012
e CAPS: released product in Q1 2012

Yy 4
CAPS CRAN

THE SUPERCOMPUTER COMRP Y

% NVIDIA. The Portland Group

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

CRANY

THE SUPERCOMPUTER COMPANY

Using directives to give the compiler information

e Developing efficient OpenMP regions is not an easy task;
however, the performance will definitely be worth the effort

e The next step will be to add OpenACC directives to allow for
compilation of the same OpenMP regions to accelerator by the
compiler.

e With OpenACC data transfers between multi-core socket
and the accelerator as well as utilization of registers and
shared memory can be optimized.

e With OpenACC user can control the utilization of the
accelerator memory and functional units.

CRANY

THE SUPERCOMPUTER COMPANY

Task 3 Correctness Debugging

e Run transformed application on the accelerator and investigate the
correctness and performance

* Run as OpenMP application on multi-core socket

e Use multi-core socket Debugger - DDT

e Run as Hybrid multi-core application across multi-core socket and
accelerator
e Tools That will be needed

* Information that was supplied by the directives/user’s interaction with
the compiler

CRANY

THE SUPERCOMPUTER COMPANY

Task 4 Letting the Compiler do all the work

The only requirement for using the !Sacc parallel loop is that the user
specify the private variables and the compiler will do the rest.

If subroutine calls are contained in the loop, -hwp must be used.

#ifdef GPU

I$acc parallel loop private(k,j,i,n,r, p, €, g, u, v, w, svel0,&

I$acc& xa, xa0, dx, dx0, dval, f, flat, para,radius, theta, stheta)&
I$acc& reduction(max:svel)

#else

ISomp parallel do private(k,j,i,n,r, p, €, g, u, v, w, svel0,&

ISomp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
ISomp& reduction(max:svel)

#endif

The Compiler will then show:
All data motion required to run the loop on the accelerator.
Show how it handled the looping structures in the parallel region

CRANY

THE SUPERCOMPUTER COMPANY

Compiler list for SWEEPX1

45.
46.
47.
48.
49 .
50.
51 .
52 ¢
53
535 .
56 ¢
57 c
58 ¢
59
B2
3.
64.
©3 .
66
67.
68.
69.
T,
2.
735
4.
75 ¢
76.
77 5
79
80.
Sl
82 .

QO 000nnnnnnnannanananananannonennnnaonaooaooone

((ol(e e puteuTe Iyt puteutopute o puto puto Buto (o JuUo SO JC JETC JTe JHTe STe JTe J0)
W W W WwWwwwwwwwwwwwwwwwwwww

#ifdef GPU
———————————— !Sacc parallel loop private(k,3j,i,n,r, p, e, 9, u, v, w, svell, &
!Saccé& xa, xal0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)s&
!Saccé& reduction (max:svel)
#else
!Somp parallel do private(k,j,i,n,r, p, e, 9, u, v, w, svelQ,&
! Sompé& xa, xal0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)s&
! Sompé& reduction (max:svel)
#endif
—————————— do k =1, ks
———————— do 3 =1, Jjs
theta=0.0
stheta=0.0
radius=0.0
i do i = 1,imax
g n=1+56
g r (n) = zro(i,j, k)
g 1% (n) = Zpr(irjlk)
g u (n) = zux(i,j, k)
g v (n) = ZuY(irjlk)
g w (n) = zuz (i, j, k)
g f (n) = zfl(i,j, k)
g xal(n) = zxa (i)
g dx0 (n) = zdx (i)
g xa (n) = zxa (1)
g dx (n) = zdx (1)
g p (n) = max(smallp,p(n))
g e (n) = p(n)/(r(n)*gamm)+0.5* (u(n)**24+v (n) **2+w (n) **2)
=== enddo
! Do 1D hydro update using PPMLR
gr2 I--> call ppmlr (svel0O, sweep, nmin, nmax, ngeom, nleft, nright,r, p, e, g, u, v, w, &
xa, xal0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)

CRANY

THE SUPERCOMPUTER COMPANY

Compiler list for SWEEPX1

ftn-6405 ftn: ACCEL File = sweepxl.f90, Line = 46
A region starting at line 46 and ending at line 104 was placed on the accelerator.

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zro" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zpr" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zux" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zuy" to accelerator, free at line 104
(acc_copyin) .

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zuz" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zfl" to accelerator, free at line 104
(acc_copyin) .

ftn-6416 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "sendl" to accelerator, copy back at line
104 (acc copy) .

CRANY

THE SUPERCOMPUTER COMPANY

Task 5 Fine tuning of accelerated program

e Understand current performance bottlenecks

e |s data transfer between multi-core socket and accelerator a
bottleneck?

* |sshared memory and registers on the accelerator being used
effectively?
* |Is the accelerator code utilizing the MIMD parallel units?
e |s the shared memory parallelization load balanced?

e |s the low level accelerator code vectorized?

e Are the memory accesses effectively utilizing the memory bandwidth?

CRANY

THE SUPERCOMPUTER COMPANY

Profile of Accelerated Version 1

Table 1: Time and Bytes Transferred for Accelerator Regions
Acc | Acc | Host | Acc Copy | Acc Copy | Calls | Function
Time$ | Time | Time | In | out | | PE=HIDE
| | | (MBytes) | (MBytes) | | Thread=HIDE
100.0% | 5 & acioc) e 67.688 | 24006.022 | 16514.196 | 14007 |Total
| __
.01 35| 15 &7 0.022 | = = | 1000 |sweepy .ACC KERNELQ@1i.47
|z s 12.827 | 0.010 | == —— | 500 |sweepx2 .ACC KERNEL@1i.46
| 2l 12.374 | 0.013 | == | —— | 500 |sweepz .ACC KERNEL@1li.67
| 14.0% | 8.170 | 0.013 | = == 500 |sweepxl .ACC KERNEL@1i.46
| B | 2.281 | 1.161 | 12000.004 | S 1000 |sweepy .ACC COPYQ@1i.47
| 802 | 1.162 | 0.601 | 6000.002 | - 500 |sweepz .ACC COPY@1li.67
| 96" | 0.953 | 0.014 | -- | 6000.004 | 1000 |sweepy .ACC COPYQ@1i.129
| 0= | 0.593 | 0.546 | 3000.002 | —Taal| 500 |sweepxl .ACC COPYQ@1i.46
| R0 | 0.591 | 0.533 | 3000.002 | - 500 |sweepx2 .ACC COPYQ@1i.46
| 0.8% | 0.494 | 0.015 | -- | 3000.002 | 500 |sweepx2 .ACC COPYQ@1i.1l07
| 0.8% | 0.485 | 0.007 | -— | 3000.002 | 500 |sweepxl .ACC COPYQ@1i.104
| 0.8% | 0.477 | 0.007 | -- | 3000.002 | 500 |sweepz .ACC COPYE@11i.150
| 0.4% | 0.250 | 0.016 | -— | 1503.174 | 500 |vhone .ACC COPY@1li.251
| 0.0% | 0.005 | 0.005 | 6.012 | -— 1 |vhone .ACC COPYQ@1i.205
| 0.0% | 0.001 | 0.000 | -— 6.012 | 1 |vhone .ACC COPYQ@1i.283
| 0.0% | 0.001 | 0.000 | -— 5.000 | 1 |vhone .ACC COPYQ@1i.266
|::::::::::::::::::===================:===:::===========::::::::========================:
Differences in runtime

All MPI on 4096 cores 43.01 seconds

Hybrid 256 nodesx16 threads 45.05 seconds

Rest Hybrid 256x16 threads 47.58 seconds

OpenACC 256xgpu 105.92 seconds

CRANY

THE SUPERCOMPUTER COMPANY

Task 4 Fine tuning of accelerated program

e Tools that will be needed:
Compiler feedback on parallelization and vectorization of input
application

Hardware counter information from the accelerator to identify
bottlenecks in the execution of the application.

e Information on memory utilization
e Information on performance of SIMT units

Several other vendors are supplying similar performance gathering tools

Useful tools contd.

e Craypat profiling
e Tracing: "pat_build -u <executable>" (can do APA sampling first)

e "pat_report -O accelerator <.xf file>"; -T also useful
e Other pat_report tables (as of perftools/5.2.1.7534)

acc_fu
acc_time
acc_time_fu

acc_show_by ct

CRANY

THE SUPERCOMPUTER COMPANY

flat table of accelerator events

call tree sorted by accelerator time

flat table of accelerator events sorted by accelerator time
regions and events by calltree sorted alphabetically

CRANY

THE SUPERCOMPUTER COMPANY

Run and gather runtime statistics

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
| | | | | PE="HIDE'
| | | | | Thread="HIDE'
100.0% | 83.277477 | == -- | 851.0 |Total
| __
| 51.3% | 42.762837 | == | -- | 703.0 |ACCELERATOR
L ettt bttt bt
|| 18.8% | 15.672371 | 1.146276 | 7.3% | 20.0 |recolor .SYNC COPY@li.790€not good
|| 16.3% | 13.585707 | 0.404190 | 3.1% | 20.0 |recolor .SYNC COPY@li.793€not good
| | 7.5% | 6.216010 | 0.873830 | 13.1% | 20.0 |lbm3d2p d .ASYNC KERNELQ@li.1l16
| | 1.6% | 1.337119 | 0.193826 | 13.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.119
| | 1.6% | 1.322690 | 0.059387 | 4.6% | 1.0 |1lbm3d2p d .ASYNC COPY@1i.100
| | 1.0% | 0.857149 | 0.245369 | 23.7% | 20.0 |collisionb .ASYNC KERNEL@1li.586
| | 1.0% | 0.822911 | 0.172468 | 18.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.114
| | 0.9% | 0.786618 | 0.386807 | 35.2% | 20.0 |injection .ASYNC KERNEL@1i.1119
| | 0.9% | 0.727451 | 0.221332 | 24.9% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.118

CRANY

THE SUPERCOMPUTER COMPANY

Keep data on the accelerator with acc_data region

!Sacc data copyin(cix,cil,ci2,ci3,ci4,ci5,ci6,ci7,ci8,ci9,cil0,cill, &
!Sacc& cil2,cil3,cil4, r,b,uxyz,cell, rho,grad, index max, index, &
!Sacc& ciy,ciz,wet,np, streaming sbufl, &

!Saccé streaming sbufl, streaming sbuf2, streaming sbuf4, streaming sbuf5, &
!Saccé streaming sbuf7s, streaming sbuf8s, streaming sbuf9n, streaming sbuflOs, &
!Saccé streaming sbuflln,streaming sbufl2n,streaming sbufl3s,streaming sbufldn, &
!Saccé streaming sbuf7e, streaming sbuf8w,streaming sbuf9e, streaming sbuflle, &
!Saccé streaming sbufllw, streaming sbuflZe, streaming sbufl3w, streaming sbuflidw, &
!Saccé streaming rbufl, streaming rbuf2, streaming rbuf4, streaming rbuf5, &
!Saccé streaming rbuf7n, streaming rbuf8n, streaming rbuf9s, streaming rbuflOn, &
!Saccé streaming rbuflls,streaming rbufl2s,streaming rbufl3n, streaming rbuflds, &
!Saccé streaming rbuf7w, streaming rbuf8e, streaming rbuf9w, streaming rbuflOw, &
!Saccé streaming rbuflle,streaming rbufl2w,streaming rbufl3e, streaming rbuflde, &
!Saccé send e, send w,send n,send s,recv_e,recv_w,recv_n,recv_s)

do ii=1,ntimes

O 0 O

call set boundary macro press2
call set boundary micro_press
call collisiona

call collisionb

call recolor

Now when we do communication we have to update the host

!Sacc parallel loop private(k,Jj, 1)
cloaSEERlccal 1y-1
siommrS(FPNiocal 1x-1
if (cell(i,j,0)==1) then

grad (1,3J,-1) = (1.0d0-wet)*db*press
else
grad (1,3J,-1) = db*press
end 1if
grad (1i,3,1z) = grad(1,3,1z-1)
end do

end do

!Sacc end parallel loop

!Sacc update host (grad)
call mpi barrier (mpi comm world, ierr)
call grad exchange

!Sacc update device (grad)

CRANY

THE SUPERCOMPUTER COMPANY

But we would rather not send the entire grad array back — how about

: CRANY"
Packing the buffers on the accelerator THE SUPERCOMPUTER COMPANY

!Sacc data present(grad,recv _w,recv e,send e,send w,recv n, &

ISaccs recv_s,send n,send s)
SRt 1oop
do k=-1,1z
do j=-1,1local ly
send e(j, k) = grad(local 1x-1,7] , K)
send w(j, k) = grad(0] r K)
end do
end do

!Sacc end parallel loop
!Sacc update host (send e, send w)
call mpi irecv(recv w, bufsize(2),mpi double precision,w id, &
tag(25),mpi comm world,irequest in(25),ierr)
o o o
call mpi isend(send w, bufsize(2),mpi double precision,w id, &
tag(26), & mpi comm world, irequest out (26),ierr)
call mpi waitall(2,irequest in(25),istatus req,ierr)
call mpi waitall(2,irequest out(25),istatus req, ierr)
ISacc update device(recv e, recv_w)
!Sacc parallel
i Eicc loop

Slepals==1, 1z
S e =1, 1local ly
Eiad(local 1xau, el e (5] k)

grad (-1 ;] SO e (), k)

Final Profile - bulk of time in kernel execution

- 592782

11403.

0

CRANY

THE SUPERCOMPUTER COMPANY

| ACCELERATOR

O O O O O OO OO OOORFRLPRDNDNWWW

OO R, P EFEEPDNDDNDDND WD

.021619
.359080
.326085
.035232
.216648
.401916
.734026
.530201
. 714995
. 738615
.656962
.489231
.487132
21N
o 2 Shih T
.212260
.208250
.696120
.624982

O O O O OO MNDNMNONONMEEOWEREDNDW

.078137
.072147
.469419
.464608
.505232
.093716
.488785
.132243
.518495
.986891
.454093
.409892
.311190
.510645
.288743
.298053
.422182
.442372
.379697

O O O O O OO OO OOIOOO0OoOooo oo

| lbm3d2p d .ASYNC KERNEL@11i.129

| lbm3d2p d .ASYNC KERNEL@1li.127

| lbm3d2p d .ASYNC KERNEL@1li.132
|collisionb .ASYNC KERNEL@1i.599

| lbm3d2p d .ASYNC KERNEL@1i.131
|linjection .ASYNC KERNEL@1i.1116
|recolor .ASYNC KERNEL@1i.786
|collisionb .SYNC COPY@1i.593
|collisionb .SYNC COPY@li.596
|collisionb .ASYNC KERNEL@1li.568

| lbm3d2p d .ASYNC COPY@1i.100

| streaming exchange .ASYNC COPY@11i.810

| streaming exchange .ASYNC COPY@1li.625

| streaming exchange .SYNC COPY@1li.622

| streaming exchange .SYNC COPY@1li.574

| streaming exchange .SYNC COPY@1li.759

| streaming exchange .SYNC COPYQ@1i.806

| streaming exchange .ASYNC KERNEL@1li.625
| streaming exchange .ASYNC KERNEL@1i.525

CRANY

THE SUPERCOMPUTER COMPANY

Cray GPU Programming Environment

e Objective: Enhance productivity related to porting applications to hybrid
multi-core systems
e Four core components
e Cray Statistics Gathering Facility on host and GPU
* Cray Optimization Explorer — Scoping Tools (COE)
e Cray Compilation Environment (CCE)
e Cray GPU Libraries

Titan: Early Science Applications

WL-LSMS

Role of material disorder,
statistics, and fluctuations in
nanoscale materials and
systems.

S3D

How are going to
efficiently burn next
generation diesel/bio
fuels?

PFLOTRAN

Stability and viability of large
scale CO, sequestration;
predictive containment
groundwater transport

CAM / HOMME

Answer questions about specific
climate change adaptation and
mitigation scenarios; realistically
represent features like
precipitation patterns/statistics
and tropical storms

CRRANY

THE SUPERCOMPUTER COMPANY

LAMMPS

Biofuels: An atomistic model
of cellulose (blue)
surrounded by lignin
molecules comprising a
total of 3.3 million atoms.
Water not shown.

Denovo
Unprecedented high-
fidelity radiation
transport calculations
that can be used in a
variety of nuclear
energy and technology
applications.

CRANY

THE SUPERCOMPUTER COMPANY

S3D — A DNS solver

e Structured Cartesian mesh flow solver

e Solves compressible reacting Navier-Stokes, energy and species

conservation equations.
8t order explicit finite difference method

— 4% order Runge-Kutta integrator with error estimator / / —
Detailed gas-phase thermodynamic, chemistry and

A
molecular transport property evaluations / / / /
A
P

Lagrangian particle tracking

MPI-1 based spatial decomposition and parallelism / / /
Fortran code. Does not need linear algebra, FFT or ¥
solver libraries. / / /

Developed and maintained at CRF, Sandia (Livermore) with BES and ASCR
sponsorship. Pl — Jacqueline H. Chen (jhchen@sandia.gov)

N —

-~ THE SUPERCOMPUTER COMPANY

Benchmark Problem and Profile —
* A benchmark problem was defined to closely resemble the target simulation

* 52 species n-heptane chemistry and 483 grid points per node

— 483 * 18,500 nodes = 2 billion
grld pOintS Integrator; I Chemistry

— Target problem would take two
months on today’s Jaguar

 Code was benchmarked and
profiled on dual-hex core XT5

e Several kernels identified and
extracted into stand-alone
driver programs

Thermo
properties;
4%

Core S3D

o

CRANY

THE SUPERCOMPUTER COMPANY

Acceleration Strategy

Team:

Ramanan Sankaran ORNL

Ray Grout NREL
John Levesque Cray
Goals:

Convert S3D to a hybrid multi-core application suited for a multi-core node with
or without an accelerator.

Be able to perform the computation entirely on the accelerator.
Arrays and data able to reside entirely on the accelerator.
Data sent from accelerator to host CPU for halo communication, I/0 and monitoring only.

Strategy:

To program using both hand-written and generated code.
Hand-written and tuned CUDA*.
Automated Fortran and CUDA generation for chemistry kernels

Automated code generation through compiler directives

® S3D is now a part of Cray’s compiler development test cases

CRRANY

THE SUPERCOMPUTER COMPANY

Original S3D

S3D
Time Step Solve Drive
Time Step Runge K Integrate

Time Step Runge K RHS

get mass
Time Step Runge K fraction
Time Step Runge K get_velocity
Time Step Runge K calc_inv_avg
Time Step Runge K calc_temp

Compute
Time Step Runge K Grads
Time Step Runge K Diffusive Flux
Time Step Runge K Derivatives

Time Step Runge K reaction rates

CRANY

THE SUPERCOMPUTER COMPANY

Profile from Original S3D

Table 1: Profile by Function Group and Function
Time$% | Time | Imb. \ Imb | Calls | Group
| | Time | Time% | | Function
| \ | | | PE=HIDE
| | \ \ \ Thread=HIDE
100.0% | 284.732812 | == | -- | 156348682.1 |Total
| __
| 92.1% | 262.380782 | == -- | 155578796.1 |USER
| === == = T
|| 12.4% | 35.256420 | 0.237873 | 0.7% | 391200.0 |ratt i .LOOPS
|] 9.6% | 27.354247 | 0.186752 | 0.7% | 391200.0 |ratx i .LOOPS
|] 7.7% | 21.911069 | 1.037701 | 4.5% | 1562500.0 |mcedif .LOOPS
|] 5.4% | 15.247551 | 2.38%9440 | 13.6% | 35937500.0 |mcevald
|] 5.2% | 14.908749 | 4.123319 | 21.7% | 600.0 |rhsf .LOOPS
|] 4.7% | 13.495568 | 1.229034 | 8.4% | 35937500.0 |mceval4 .LOOPS
|| 4.6% | 12.985353 | 0.620839 | 4.6% | 701.0 |calc_tempSthermchem m .LOOPS
|| 4.3% | 12.274200 | 0.167054 | 1.3% | 1562500.0 |mcavis newStransport m .LOOPS
|| 4.0% | 11.363281 | 0.606625 | 5.1% | 600.0 |computespeciesdiffflux$transport m .LOOPS
|| 2.9% | 8.257434 | 0.743004 | 8.3% | 21921875.0 |mixcp$thermchem m
|| 2.9% | 8.150646 | 0.205423 | 2.5% | 100.0 |integrate_ .LOOPS
|| 2.4% | 6.942384 | 0.078555 | 1.1% | 391200.0 |gssa_ i .LOOPS
|| 2.3% | 6.430820 | 0.481475 | 7.0% | 21921875.0 |mixcp$thermchem m .LOOPS
|| 2.0% | 5.588500 | 0.343099 | 5.8% | 600.0 |computeheatfluxS$transport m .LOOPS
|| 1.8% | 5.252285 | 0.062576 | 1.2% | 391200.0 |rdwdot i .LOOPS
|| 1.7% | 4.801062 | 0.723213 | 13.1% | 31800.0 |derivative x calc_ .LOOPS
| 1.6% | 4.461274 | 1.310813 | 22.7% | 31800.0 |derivative y calc_ .LOOPS
|| 1:.5% 4.327627 | 1.290121 | 23.0% | 31800.0 |derivative z calc_ .LOOPS
|| 1.4% | 3.963951 | 0.138844 | 3.4% | 701.0 |get mass frac$variables m .LOOPS

CRRANY

Restructured S3D for multi-core systems THE SUPERCOMPUTER COMPANY
S3D
Time Step Solve_Drive
Time Step Runge K Integrate

Time Step Runge K RHS

Time Step Runge K get mass fraction
Time Step Runge K get_velocity
Time Step Runge K calc_inv_avg
Time Step Runge K calc_temp

Time Step Runge K Compute Grads
Time Step Runge K Diffusive Flux
Time Step Runge K Derivatives

Time Step Runge K reaction rates

CRANY

THE SUPERCOMPUTER COMPANY

Statistics from running S3D

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function|--————="""555 0 s

85.3% | 539.077983 | == | -— | 144908.0 |USER
E I e e e e
|| 21.7% | 136.950871 | 0.583731 | 0.5% | 600.0 |rhsf
[14.7% | 93.237279 | 0.132829 | 0.2% | 600.0 |rhsf .LOOPE@11.1084
| | 8.7% | 55.047054 | 0.309278 | 0.6% | 600.0 |rhsf .LOOPE@11.10098
| | 6.3% | 40.129463 | 0.265153 | 0.8% | 100.0 |integrate
| | 5.8% | 36.647080 | 0.237180 | 0.7% | 600.0 |rhsf .LOOPE@11i.1211
| | 5.6% | 35.264114 | 0.091537 | 0.3% | 600.0 |[rhsf .LOOP@1i.194
| | 3.7% | 23.624271 | 0.054666 | 0.3% | 600.0 |rhsf .LOOP@1i.320
| | 2.7% | 17.211435 | 0.095793 | 0.6% | 600.0 |[rhsf .LOOP@1i.540
| | 2.4% | 15.471160 | 0.358690 | 2.6% | 14400.0 |derivative y calc buff r .LOOP@1i.1784
| | 2.4% | 15.113374 | 1.020242 | 7.2% | 14400.0 |derivative z calc buff r .LOOP@1i.1822
| | 2.3% | 14.335142 | 0.144579 | 1.1% | 14400.0 |derivative x calc buff r .LOOP@1i.1794
| | 1.9% | 11.794965 | 0.073742 | 0.7% | 600.0 |integrate .LOOP@1i.96
| | 1.7% | 10.747430 | 0.063508 | 0.7% | 600.0 |computespeciesdiffflux2Stransport m .LOOP
| | 1.5% | 9.733830 | 0.096476 | 1.1% | 600.0 |rhsf .LOOPQR1i.Z247
| | 1.2% | 7.649953 | 0.043920 | 0.7% | 600.0 |rhsf .LOOPQR1i.Z274
| | 0.8% | 5.116578 | 0.008031 | 0.2% | 600.0 |rhsf .LOOPQR1i.398
| | 0.6% | 3.966540 | 0.089513 | 2.5% | 1.0 [s3d_
| | 0.3% | 2.027255 | 0.017375 | 1,0% | 100.0 |integrate .LOOP@1i.73
| | 0.2% | 1.318550 | 0.001374 | 0.1% | 600.0 |rhsf .LOOPQR1i.376
| | 0.2% | 0.986124 | 0.017854 | 2.0% | 600.0 |rhsf .REGION@1i.1096
| | 0.1% | 0.700156 | 0.027669 | 4.3% | 1.0 |exit

Advantage of raising loops :

I

e e —— i e

e Create good granularity OpenMP Loop
* |Improves cache re-use
e Reduces Memory usage significantly

e Creates a good potential kernel for an accelerator

12/3/2012

Restructured S3D for multi-core systems

Time Step —acc_data

Time Step—acc_data RungeK
Time Step—acc_data RungeK
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data Runge K
Time Step—acc_data RungeK
Time Step—acc_data RungeK
Time Step—acc_data Runge K
Time Step—acc_data Runge K

Time Step—acc_data Runge K

CRRANY

THE SUPERCOMPUTER COMPANY

S3D

Solve Drive

Integrate

RHS
get mass fraction
get_velocity
calc_inv_avg
calc_temp
Compute Grads
Diffusive Flux
Derivatives

reaction rates

What does OpenACC look like

12/3/2012

#ifdef GPU
!$acc data copyin(avmolwt, cpCoef aa, cpCoef bb, cpmix, enthCoef aa, enthCoef bb, &

!'Saccé
!Saccé
!Saccé
!Saccé
!Saccé
#endif

gamma, invEnthInc,

neg f x buf, neg f y buf, neg f z buf, pos f x buf, pos f y buf, pos f z buf, &

neg fs x buf, neg fs y buf, neg fs z buf, pos fs x buf, pos fs y buf, pos fs z buf,

rk alpha, rk beta, rk err, rmcwrk, Ru, temp, temp hibound, temp lobound, tstep,

u, vary in x, vary in y, vary in z, volum, yspecies,q,q err)

Supercomputing 2012 Nov 12, 2012

&

iorder, lrmcwrk, mixMW, molwt c, molwt, n spec,neighbor, nsc, pressure, &

&

What does OpenACC look like

#ifdef GPU

I$acc data present_or_create(avmolwt, cpcoef _aa, cpcoef bb, cpmix, enthcoef aa, enthcoef bb, &
I$acc& gamma, invEnthinc, Irmcwrk, molwt_c, molwt, n_spec, pressure, g, neighbor, nsc, &
I$acc& rhs, rmcwrk, Ru, temp, temp_hibound, temp_lobound, u, vary_in_x, vary in_y, &

I$acc& vary in_z, volum, yspecies, ds_mxvg, diffflux,tmmp2n,sumfl,sumf2,&

I$acc& diffusion, grad_mixmw, grad_t, grad_u, grad_ys, h_spec, lambdax, &

I$acc& rr_r, rs_therm_diff, tmmp, tmmp2, tmmpdx,voltmp, vscsty,&

I$acc& neg_fs x buf, neg fs_y bufneg fs z buf, pos fs x buf, pos fs y buf, pos fs z buf, &
ISacc$ bufferdl,buffer42,buffer43,buffer44,buffer45s, &

I$acc& buffer31,buffer32,buffer33,buffer34,buffer35,buffer36,buffer37, &

I$acc& neg_f x buf, neg f y buf,neg f z buf, pos_f x buf, pos f y buf, pos_f z buf,mixmw)&
I$acc& copyin(jstage,scalelx,scalely,scalelz,aex,bex,cex,dex,ds,aey,bey,cey,dey,aez,bez,cez,dez)
#endif

12/3/2012 Supercomputing 2012 Nov 12, 2012

CRANY
2

\
\

What does OpenACC look like

#ifdef GPU

I$acc parallel loop gang private(i,ml,mu)

#else

ISomp parallel private(i, ml, mu)

ISomp do

#endif

doi=1, nx*ny*nz, ms
ml =i
mu = min(i+ms-1, nx*ny*nz)
call calc_gamma_r(gamma, cpmix, avmolwt, ml, mu)
call calc_press_r(pressure, q(1,1,1,4), temp, avmolwt, ml, mu)
call calc_specEnth_allpts_r(temp, h_spec, ml, mu)

end do

#ifdef GPU

I$acc end parallel loop

#else

ISomp end parallel

#endif

12/3/2012 Supercomputing 2012 Nov 12, 2012

®°
CRANY
2

What OpenACC looks like

#ifdef GPU

!'$Sacc parallel loop gang collapse(2) private(n,i,J, k)

#else

!Somp parallel do private(n,i,Jj, k)

#endif
do n=1,n spec
do k = 1,nz
#ifdef GPU
!'Sacc loop vector collapse(2)
#endif
do j = 1,ny
do i = 1,nx
grad ¥Ys(i,j,k,n,1)
grad ¥Ys(i,j,k,n,2)
grad ¥Ys(i,j,k,n,3)

o O O

if(i.gt.iorder/2 .and.

grad Ys(i,Jj,k,n,1)

.0
.0
.0
i.le.nx-iorder/2) then

= scalelx (i) * (aex *(yspecies(i+l,3j,k,n)-yspecies(i-1,7j,k,n)

+ bex *(yspecies (i+2,7,k,n)-yspecies(i-2,7,k,n))
+ cex *(yspecies (i+3,3,k,n)-yspecies(i-3,3,k,n))
+ dex *(yspecies(i+4,7,k,n)-yspecies(i-4,7,k,n)))

endif

if(j.gt.iorder/2 .and.

grad Ys(i,3j,k,n,2)

j.le.ny-iorder/2) then
= scalely(j) * (aey *(yspecies(i,j+1,%k,n)-yspecies(i,j-1,%,n)

+ bey *(yspecies(i,j+2,k,n)-yspecies(i,j-2,k,n))
+ cey *(yspecies (i, j+3,k,n)-yspecies(i,j-3,k,n))
+ dey *(yspecies(i,j+4,k,n)-yspecies(i,j-4,%k,n)))

endif

if(k.gt.iorder/2 .and. k.le.nz-iorder/2) then

grad Ys(i,3,k,n,3)

= scalelz (k) *(aez *(yspecies(i,j,k+l,n)-yspecies(i,j,k-1,n)

+ bez *(yspecies(i,j,k+2,n)-yspecies(i,j,k-2,n)) &
+ cez *(yspecies (i, j,k+3,n)-yspecies(i,j,k-3,n)) &
+ dez *(yspecies(i,Jj,k+4,n)-yspecies(i,j,k-4,n)))

endif
end do ! i
end do [
#ifdef GPU
!'Sacc end loop
#endif
end do Ik
end do !'n
#ifdef GPU
!'Sacc end parallel loop
#endif
12/3/2012

Supercomputing 2012 Nov 12, 2012

)

What does OpenACC look like

#ifdef GPU

#ifdef GPU STREAMS

!$Sacc update host(pos fs x buf(:,:,:,idx)) async(istr)

#else

!Sacc host data use device (pos fs x buf)

#endif

#endif

#ifdef GPU_ STREAMS

call cray mpif isend openacc(c loc(pos fs x buf(l,1,1,idx)), (my*mz*iorder/2), &

MPI REALS8,deriv x list (idx) %neg nbr,idx+deriv list size, &
gcomm, istr,deriv _x list (idx)%req(2),ierr)

#else
call MPI_ISend(pos_fs_x_buf(1,1,l,idx),(my*mz*iorder/2),&
MPI REALS8,deriv x list (idx)%neg nbr,idx+deriv list size, &
gcomm,deriv x list (idx)S%reqg(2),ierr)
#endif
#ifdef GPU

#ifndef GPU STREAMS
!$acc end host data
tendif
tendif

12/3/2012 Supercomputing 2012 Nov 12, 2012

What does OpenACC look like RSSO

#ifdef GPU
!$Sacc host data use device(neg f x buf)
#endif
call MPI IRecv(neg f x buf(l,1,1,1idx), (my*mz*iorder/2),&
MPI REALS8,deriv_x list (idx) %neg nbr,idx, &
gcomm,deriv_x list (idx)%req(l),ierr)
#ifdef GPU
!$acc end host data
#endif
endif
if (lnbr(2)>=0) then
! get ghost cells from neighbor on (+x) side
#ifdef GPU
!$acc host data use device(pos f x buf)
#endif
call MPI IRecv(pos f x buf(l,1,1,1idx), (my*mz*iorder/2),&
MPI REALS8,deriv x list (idx)%$pos nbr, idx+deriv list size, &
gcomm,deriv x list (idx)%req(3),ierr)
#ifdef GPU
!$acc end host data
#endif
endif

12/3/2012 Supercomputing 2012 Nov 12, 2012

1$Sacc host data use device

#ifdef GPU
!Sacc data present (f)
!$acc host data use device (f)
#endif
if(deriv_z list(idx) %packed) then
deriv_z list(idx)%packed = .false.
if (deriv_z list (idx)%neg nbr>=0) then
call MPI ISend(f(1,1,1), (mx*my*iorder/2), &

MPI REAL8,deriv_z list(idx)%neg nbr,deriv list size + idx,

&
gcomm,deriv_z list(idx)%req(2),ierr)
endif
if (deriv_z list (idx)%pos_nbr>=0) then
! send ghost cells to neighbor on (+z) side
nm = mz + 1 - iorder/2
call MPI ISend(f(1,1,nm), (mx*my*iorder/2), &
MPI REAL8,deriv_z list (idx) %pos nbr,idx, &
gcomm,deriv_z list(idx)%req(4),ierr)
endif
else
if (deriv_z list (idx)%neg nbr>=0) then
call MPI ISend(f(1,1,1), (mx*my*iorder/2), &
MPI REAL8,deriv_z list(idx)%neg nbr,deriv list size + idx, &
gcomm,deriv_z list(idx)%req(2),ierr)
endif

if (deriv_z list (idx)%pos_nbr>=0) then
! send ghost cells to neighbor on (+z)

nm mz + 1 - iorder/2

call MPI ISend(f(1,1,nm), (mx*my*iorder/2), &

side

MPI REAL8,deriv_z list (idx) %pos nbr,idx,
gcomm,deriv_z list(idx)%req(4),ierr)
endif
endif
#ifdef GPU
!$acc end host data

!Sacc end data
#endif

&

86 [(JLOFoeoeoee

